

... experts for the spatial view

Discovering the Dutch mountains

An experiment with automated landform classification for purposes of archaeological predictive mapping

Philip Verhagen Lucian Drăguț

"Behind the Scenes"
Münster
20 November 2010

geomorphological maps and predictive modelling

- geomorphological maps are important data sources for predictive modelling
 - □ settlement is often concentrated on specific landform units, like ridges
- disadvantages
 - \square low resolution (1:50.000)
 - expert judgement classification of landform, based on both morphometric and genetic criteria
- difficult to produce at higher resolution
 - visual interpretation of LIDAR-based DEMs is time-consuming

an example

Fig. 90 Schematische doorsnede van dekzandruggen en van een dekzandwelving. Zie fig. 93 voor de reliëfsubklassen van K14 en K15.

automated landform classification

- GIS offers tools to derive landforms from DEMs, like delineating watersheds, channels and ridges
 - however, standard GIS methods are not very good at classifying more complex landforms
 - more sophisticated methods that classify DEMs into forms and relative position have been developed
 - □ these are mostly used in mountainous areas
 - primary application in geomorphology and soil science
- two methods tried
 - unsupervised nested means (Iwahashi & Pike 2007)
 - multiresolution ('dynamic') segmentation (Drăguț & Blaschke 2006)
- would these perform well in a flat area?

unsupervised nested means

- takes 3 factors into account
 - slope
 - □ local convexity (3x3 neighbourhood)
 - 'texture' (median of elevation in 3x3 neighbourhood)
- DEM smoothed and resampled to 25x25 m
- texture did not give clear results
 - replaced by the mean of elevation within a 10 cell circular neighbourhood
- the three factors are each sliced in two categories
 - □ below and above the mean value in the study region
- the final map shows the combination of the sliced factor maps in 8 classes

- satisfactory classification for ridges, less so for valleys and depressions
- sensitive to scale
 - □ when using larger neighbourhoods, larger landform units are created
- thresholds of mean elevation do not conform to original geomorphological classification
- no possibility to automatically combine classified zones into larger units
 - □ on geomorphological maps, a ridge includes the top and the sides

- generates discrete objects from images (segmentation)
 - computes local variance (LV) at different scale levels
 - LV is plotted against scale to detect thresholds of change
 - indicates the scale levels at which the image can be best segmented

method applied

- based on 5x5 m elevation
 - □ slope and curvature not included
- resulted in clear distinction between built-up and natural areas
- the natural areas were further subdivided in high and low
 - □ compared to the mean elevation values within a 5 km radius
- these were further subdivided in flat and sloping areas

- DEM was smoothed and resampled to 25x25 m
- segments represent areas with homogeneous elevation
- classification then followed the logic of the Iwahashi and Pike method
 - e.g. a valley is classified as a segment with mean elevation more than 0.5 standard deviations below the mean of its neighbouring segments

results

- some clear advantages
 - segmentation results are region-specific
 - segmentation rules are objective
 - method is transferable to other regions
- issues to be solved
 - classification rules are subjective
 - especially the neighbourhood threshold chosen is important in this respect
 - □ software used (Definiens/eCognition) is proprietary (and expensive)

- dynamic segmentation is a powerful method to extract landform, but
 - segmentation does not always give a good match with the geomorphological map
 - the genetic component used in the standard classification scheme cannot be extracted with automated rules
 - automatic combination of landform classes into larger units needs additional formal rules
- the role of scale in defining landform should be more closely investigated
- classification rules should be re-assessed
 - □ how can we merge the standard geomorphogical classification system with automated classification rules?
 - do archaeologists perhaps need different classification schemes?

TO BE CONTINUED

