REDEFINING LIMITS

The (Invisible) Future of Archaeological Aerial Reconnaissance

Geert Verhoeven

OVERVIEW

□ Aerial archaeology

□ Theoretical background

□ Approach 1: low-cost

□ LBI

Approach 2: more expensive

Future

□ Conclusion

Overview

Aerial archaeology

> Some theory

Low-cost approach

I BI

Costly approach

−uture

AERIAL ARCHAEOLOGY – WHAT'S IN A NAME

Overview

Aerial archaeology

Some theory

Low-cost approach

I BI

Costly approach

Futur

- Aerial archaeology
 - o Acquisition of data
 - Data inventory
 - Mapping
 - Interpretation
 - Comparison
- □ Data acquired from a certain altitude
 - (Spy)satellites
 - RADAR and LiDAR data
 - o Airborne multi/hyperspectral scanning
 - o Vertical (high-altitude) aerial photography
 - o Oblique (low-altitude) aerial photography

AERIAL ARCHAEOLOGY – 21st CENTURY

- □ New sensing devices
 - o Digital cameras (still and video)
 - Hyperspectral sensors
 - o LiDAR
 - Satellite sensors (< 0.5 m GSD)
- □ Alternative acquisition & processing approaches
 - Strip flying total coverage (LiDAR, RADAR, hyperspectral, verticals)
 active archaeological reconnaissance -> observer directed
 - Drones or R/C flying devices

Expensive

LiDAR

Hyperspectral

HR satellite imagery

Digital Image Processing (SFM, auto-orthorectification)

GAFA (Generally Affordable for Archaeologists)

Digital Still Cameras (DSCs)

R/C flying devices

Digital image processing

Overview

Aerial archaeology

Some theory

Low-cost approach

I BI

Costly approach

Futur

Conclusion

All rights reserved
© 2010 gEEvEE

AERIAL ARCHAEOLOGY – FEATURES

- Crop marks
 - Positive
 - o Negative
- □ Soil marks
- □ Shadow marks
- □ Snow marks
- Water marks
- Visible material remains
 - → indirect indication of possible archaeological remains
 - \rightarrow contrast

Aerial archaeology

Some theory

Low-cost approach

LBI

Costly approach

Futur

Conclusion

All rights reserved © 2010 gEEvEE

THEORETICAL BACKGROUND (I)

- □ Invisible spectral radiation
- Recording media
 - o Digital cameras: Near-UltraViolet (NUV) Near-InfraRed (NIR)
 - Hyperspectral sensors: visible NIR

Overview

Aerial archaeology

Some theory

Low-cost approach

ΙB

Costly approach

Futur

THEORETICAL BACKGROUND (II)

□ Healthy green vegetation

- EM waves are absorbed, reflected and transmitted
- o Visble range → pigments
- ↓ absorptivity of chlorophyll around 550 nm
 → green
- NIR → leaf's internal cellular structure
- o 50 % NIR versus 5 % VIS
- Red edge: edge between visible spectrum and NIR spectrum
- Most prominent reflectance characteristic
- Lack of NUV data

Overview

Aerial archaeology

Some theory

Low-cost approach

I BI

Costly approach

Futur

THEORETICAL BACKGROUND (III)

□ Stressed vegetation

- NIR → less straightforward
- o Altered internal structure and/or water content
- short-term, acute stress: ↑ NIR reflectance
- o chronic stress: NIR reflectance ↓
- Red edge → most consistent stress response

Overview

Aerial rchaeology

Some theory

Low-cost

LB

Costly approach

Future

APPROACH 1 – TOOLS

□ Digital still cameras

- Silicon sensor
- Sensitive to NUV, visible, and NIR
- NUV-NIR block filter on the sensor

Wavelength (nm)

- o Remove filter
- New filter in front of the sensor

Overview

Aerial archaeology

Some

Low-cost approach

I BI

Costly approach

Futur

Conclusion

0.25

APPROACH 1 – DATA ACQUISITION

- □ RAW
 - o Most pristine sensor data
 - JPEG or TIFF → scientifically unjustifiable
- □ Two (later three) DSCs
 - o Simultaneously operated
 - o Comparison with visible
 - Doorless aircraft
 - Helikite Aerial Photography

Overview

Aerial archaeology

> Some theory

Low-cost approach

ΙB

Costly approach

Futur

APPROACH 1 – NEAR-INFRARED (I)

□ Visible versus pure NIR

□ Negative crop marks

○ *Chlorosis* → difficult

o Long-term stress → better

o Low-density vegetation

Positive crop marks

Aerial rchaeology

Some heory

Low-cost approach

I BI

Costly approach

Futur

APPROACH 1 – NEAR-INFRARED (II)

APPROACH 1 – RED EDGE

□ Best results: R₇₀₀ / R₈₀₀

Overview

Aerial archaeology

> Some theory

Low-cost approach

I BI

Costly approach

uture

APPROACH 1 – NEAR-ULTRAVIOLET (I)

- Straightforward Red edge & NIR aerial imaging
 - o Aeroplane + DSC + lens (any) + filter
- □ Problematic NUV photography
 - o Small amount of terrestrial NUV (ozone layer)
 - Rayleigh scattering (haze, reduced sharpness) → low altitude imaging
 - Low reflectance (< 5 %)
 - Low DSC sensitivity
 - o Glass severely blocks NUV
- Consequences
 - Rarely employed (oil spill detection)
 - Never used with aerial DSCs
 - Never used in aerial archaeolog
- Solutions
 - DSC + very old, simple lens + as
 - Very stable aerial platform → H

Overvie

Aerial archaeology

> Some theory

Low-cost approach

I BI

Costly approach

Futur

APPROACH 1 – NEAR-ULTRAVIOLET (II)

- Crop marks
 - o Visible, but not better
 - Soil instead of crop stress
- □ Soil Marks
 - Increase in soil contrast

Overviev

Aerial archaeology

> Some theory

Low-cost approach

LBI

Costly approach

Futur

LBI

□ LBI for Archaeological Prospection & Virtual Archaeology

- o Air- and spaceborne remote sensing
- o Ground-based remote sensing
- o Data integration, GIS-analyses and VR
- □ LBIPL 1 3 key areas
 - o LiDAR
 - Aerial reconnaissance
 - Imaging spectroscopy

Overviev

Aerial archaeology

Some theory

Low-cost approach

LBI

Costly approach

Futur

APPROACH 2 – IMAGING SPECTROSCOPY (I)

□ Imaging spectroscopy

- hyperspectral imaging
- spectroscopic remote sensing
- imaging spectrometry

Principle

- Conventional image
 - > 3 broad bands
 - > 3D datacube
 2 spatial dimensions: X Y

 Physicapal dimension (
- Extend this concept for Z axis
 - > > 100 bands
 - > bandwidth = few nanometers
 - > spectrally contiguous bands
- o each image = reflectance in specific band (e.g. 680 690 nm; 690 700 nm)
- a complete reflectance spectrum / pixel → spectral signature

Overview

Aerial haeology

> Some theory

Low-cost approach

LBI

Costly approach

Futur

APPROACH 2 – IMAGING SPECTROSCOPY (II)

Overviev

Aerial archaeology

Some theory

Low-cost approach

I BI

Costly approach

Futur

- Problems
 - Archaeological data acquisition
 - > when?
 - how many bands?
 - spectral resolution (FWHM)
 - spatial resolution (GSD)
 - o Archaeological data processing
 - > which bands?
 - > indices?
- □ LBI approach
 - o Intensive spectral sampling programme
 - o Data sets with small GSD (i.e. small limit of resolution)

APPROACH 2 – SAMPLING PROGRAMME

- Create a spectral library
- Collection spectral signatures
 - o Soils & plants
 - o Archaeologically influenced and untouched
 - # conditions
 - o # seasons
 - o UV (!) to NIR

Overview

Aeria archaeology

> Some heory

Low-cost approach

I BI

Costly approach

uture

APPROACH 2 – SAMPLING PROGRAMME

APPROACH 2 – SAMPLING PROGRAMME

- □ Create a spectral library
- Collection spectral signatures
 - Soils & plants
 - o Archaeologically influenced and untouched
 - o # conditions
 - o # seasons
- □ Aim
 - Guide the data acquisition
 - Guide the processing
 - Allow to customly build DSCs
 - Tell something about the UltraViolet (250 nm 400 nm)

Overview

Aerial archaeology

> Some theory

Low-cost approach

I BI

Costly approach

Futur

APPROACH 2 – SUFFICIENT GSD (I)

- Conventional
 - o GSD: 2 to 3 m
 - Insufficient for archaeology
- □ LBI
 - o GSD < 50 cm
 - o flying altitude is low enough
 - suitable detector
 - > angular resolving power is high
 - > fast integration time
 - high SNR

Overviev

Aerial archaeology

> Some theory

Low-cost approach

I BI

Costly approach

Futur

APPROACH 2 – SUFFICIENT GSD (II)

Aerial archaeology

> Some theory

Low-cost approach

I BI

Costly approach

Futur

Conclusion

All rights reserved
© 2010 gEEvEE

APPROACH 2 – SUFFICIENT GSD (III)

Aerial archaeology

Some theory

Low-cost approach

I BI

Costly approach

Futur

Conclusion

All rights reserved © 2010 gEEvEE

FUTURE

- Hyperspectral
 - Georeferencing
 - o Radiometric calibration
 - ALS + AHS fusion
- Conventional aerial reconnaissance
 - Further develop DSCs
 - o (Semi-)automatic georeferencing
 - o Drone mapping
 - o Automatic 3D extraction

Overview

Aerial archaeology

Some theory

Low-cost approach

I BI

Costly approach

Future

CONCLUSION

- Overviev
- Aerial archaeology
 - Some theory
 - Low-cost approach
 - LBI
 - Costly approach

=uture

Conclusion

- New sensors and image acquisition platforms
- Increasing
 - spatial resolution (meter level → cm level)
 - o temporal resolution (weeks → days or hours)
 - spectral resolution (broad bands → few nanometers)
 - \circ spectral range \rightarrow visible to invisible
- □ Computer power and algorithms
 - o process vast datasets
 - o new ways of analysis
- □ Low cost <> \$\$\$³
- \Box 21st century \rightarrow tools & methods

surpass conventional limits in aerial archaeology